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-Fenchel’s ~ aalitv Theorem in

• Generalized Geometri c ProRranmlirtg

• by

E1u~ r L. Petersou*

~~~~~~~~~ Fenchel ‘s duality theorem is extended to generalized geometric

progr~~~ing with explicit constraints -— an extension that also generalizes

and strengthens Sitter ’s version of the Kuhn-Tucker theorem.

Key ~~rds: Fenchel ’s duality th eorem, generalized geometric progr~~~ (r~g,

convex progra~~ ing , ordinary progranezing, Slater ’s constraint qualification,

Kuhn-Tucker theorem.
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1. Introduction. Although many implication, of thi, extension have

already been discussed in the author ’s recent survey paper (1], a proof

of it is given here for the first t ime .

This proof utilize, the uncons trained version that has already been

established by independent and somewhat different arguments in (2] and

(3]. In doing so, it exploits the main result from [4] and also requires

1 f some of the convexity theory in [3]--especially the theory having to do

j with the “relative interior” (ri S) of an arbitrary convex Set S c E N
(N-dimens ional Euclidean space).

2. The unconstrained case. We begin with the following notation and

hypotheses:

Z is a nonençty closed convex cone in

~ 
is a (proper) closed convex function with a nonempty

(effective) domain

Now, given Z and ~~~, consider the resulting “geometric prograeming

problem” Q.

PROBLEM~7 Us ing the feasib le solution set

I~ Z fl~!.,

calculate both the problem infiu~iuz

p inf Q(r)• xEd

and the optimal solution set
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Geometric duality is defined in terme of both the “dual cone”

~~~~y E E ~ I 0~~(x,y) for each x E Z)

:~ and the “conjugate transform func tion” h whose (effective) domain

ft~~(L,E E,~ sup [(~ ,x) -g(x)] is finite~xEe

and whose functional value

hQ,i) sup (<z,,x>
xEe

In particu lar , given the geometric progran’n4ng prob lem ~7, consider the

resulting “geometric dual prob lem” 8.

PROBLEM 8. Us ing the feasib le solut ion set

calcula te both the problem infizmirn

8
$ inf h(y)

y E7

and the optimal solution set

A
Y*.[yE.TIh (y) il $~J .

Fenchel~s duality theorem in the context of dual problems Q and 8

• is one of the most important theorems in geometric programing . It can

be stat d in the following way .
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Theorem 1. If problem 8 has both a feasible solution y0 E (ri’?j) fl (ri 8)

and a finite infinum J ,  then

• (I) problem ~7 has both a none~~ ty feasible solution set a.’ and a finite

infimim 
~~~
, !fl ~

~~~~~

(II) prob lem ~1 has a nonez~~ty optima l solution set d~.

This theorem is established as Theorem 31.4 on page 335 of [3].

The implications of Theorem 1 are given on page 26 of (1]. An

important extension of it is established in the next section.

3. The constrained case. To incorporate explicit constraints into

generalized geometric programeing , we introduce the following notation

and hypotheses :

I and .7 are two nonintersecti ng (possib ly empty ) positive-integer

index sets with finite card ina lity 0 (1) and o(J) respectively;

• and 7
k are independent vector variab les in E~~ for k E  [0) UI  U s ,

and xt and y~ denote the respective Cartesian products of the vector
j  jvariab les x L E t , and y , L E t  while x and y denote the respective

Cartesian products of the vector variables x1, J E J ,  and y~ , jEJ; so
0~~~ ‘~~~~ 0 ! ‘ Athe Cartesian products (x ,x’,x ’) ~x and (y ,y ,y~) y are independent

• vector variables in 
~n’ 

where

A
n nA n,

• 
• v

1
&

J J

~ and X are independent vector variables with respective components a.~

• and for LEt , and ~ and K are independent vector variab les with
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• respec tive components and K~ for J E J ;

X and Y are nonempty closed convex dual cone s in ~~~ and and
are (proper) closed convex conjugate functions with resp ective
(effective) domains C,,~ ~~~~ and c~ for k E [o~ UI’UJ.

Now, let

I (x0,x~ , x3) E x ;  a 0; KEE (J))~

where n+o(I) +o(j) ~~~ In addition, let

~ (x
°, x1, ~~~, x~, K) E E~ x0 E C0; 

~~ E C~, 
~~ 

E E1, and

iEI; (x~~K~)Ec~ j Ej 3 ,

and let

0 1  J 8
Q’ (x ,x ,a, x ,K) g0

(x )+E~~(~ K~)~
.7

where the (closed conveX) function 4 has a domain

j C ( (~~,~ 4) eith er K 4 ~0 and gup (x~,d~)<~~ , or K >0 and x~ EK C 3• ‘ d~ EDj

and functional values

r ~~ (~~,d1) if K ~O and sup &,d~)<~~\ d ED~ ~ diED
~~

~~~~ if K
1 >0 and E K

1 
C~.

The resulti ng problem s can clearly be stated in the following way .
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PROBLEM A. Consider the objective function G whose domain

• C~~[(x,K) x
kECk, kECO )UI , and (x1~K~)EC~ JEJ )

and whose functional value

I G(x, K) ~g (x
0) +Z g~~(x

1 
,

I ~~ 1 I

Usina the feasible solution set

S~~((x,K)E C Ix E X , and g~ (xt)~~0, iEI},

I ~~
• calculate both the problem irz fimum

A
• q~~ inf G(x ,K)
• (x,K)ES

and the optimal solution set

$*~ ((x,’c) ES I G(x,K) ‘ ei,3.
~
t1

Now, section 3 of 14] shows that

~~~~~~~~~~~~~~~~ (y0 ,y1,y~ ) E Y; 3 n Q , X E E Q(1) ).

I Section 3 of [4] also shows that

.fr”C(y°,y’,~ ,y3,@)EE~~Iy°ED0; (yt,Xj)ED~, tEl; y1 EDJ,

I B J
E E 1, and h

1~
y1) + e

1
�0 ,

and that

- 
h(y°,y1,X,y ~,~) ah0(y°) +~~
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where the (closed convex) function h~
’ has a domain

D
~
a[(yt,Xi) J either ~~~‘O and ~sup (yt ,ci)<z*o,, or X~ > 0  and Y~~E X ~D~ 3

and functiona l values

sup <yi ci) if and sup (y t ,ci) < # ~
~ ci E C~ ci E Ci

h~ (yt
~ X~) ~

• 

~~~i
hi~~~

/xi) ~~ ~~~~~ and y
~
E
~ iDi.

The resulting problem 8 can clearly be stated in the following way.

PROBLEM B. Consider the objective function H whose domain

D ((y ,~ ) I Y
1C E D k, k E ( 0 ) U J , ~~~~~~ (yi~~~ ) E D + iE I)

and whose functional value
1~

H(y,~) ~h0(y
0) +E

Using the feasible solution set

4
T ((y,X)ED fyEY , ~fl4 h1(y~)~~o , J E J ) ,

calculate both the problem tnfimtmz

A
$ • — inf H(y ,X)

(y , X ) E T  
•

4q4 the optimal solution set

C~~, X ) E T I H ~~,~~~ ,).

-j
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• •
It is worth noting that dual problems A and B provide the only corn-

pletely syemetric duality that is presently known for genera l (closed)

• ~~• • convex programeing with explicit constraints. Moreover , [1] and some of

• the references cited therein show that all other duality in convex pro-

graeming can be viewed as a special case. For the fundamental relations

• between geometric duality and ordinary Lagrangian duality see [5].

Fenchel’s duality theorem in the context of dual problems A and B

is one of the most important theorems , as well as one of the deepest

f theorems, in geometric programeing. It can be stated in the following

way.

Theorem 2. ~~

(i) problem B has a feasible solution (y’,X’) such that

• 
h
1

(y 1)<O JE J,

(ii) problem B has a finite infimum ~f r ,

(iii) there exists a vectQr 
~~~~~ such that

y~~E ( ri Y) ,

y~~~E (ri Dk) k E ( 0 ) U J ,

• (y~~ , X~) E (ri D~) i E I,

th en

• (I) problem A ha. both a nonemp ty feasible solution set S and a

finite infirnimt cp, ~~~

0— ~~+,t,

(~i
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(II) problem A has a nonemp ty optimal solution set S~.

Proof. We obviously need only show that the Fenchel hypothesis in Theorem

1 (i.e. the hypothesis that there exists a vector 
~
,° E (ri ’~) fl (ri.8)) is

equivalent to hypotheses (i) and (iii) in Theorem 2.

Toward that end, we first use the formulas for ‘~i and .8 to derive

comparable formulas for (ri~I) and (ri.D) -- two derivations that make

crucial use of the following basic facts:

• (A) (ri U)”U when U is a vector space,

• fl
• • (B) (ri V) = x (ri Vk) when V x Vk and the sets Vk are convex,1 1

and

(C) (ri W) (tnt W), the “interior” of W, when W is a convex set with the

same “dimension” as the space in which it is embedded.

Fact (A) is established on page 44 of (3]; fact (B) can be obtained in-

ductively from the formula at the top of page 49 of [3]; and fact (C)

is explained on page 44 of (3].

Now, the formula for ~i along with facts (A) and (B) implies that

(ri~ ) - ((y
0,y1,X,y3,3) E E~ (yO,yI,yJ) € (ri Y); XE E0(1); ~ 0) .

Moreover, the formula for .8 along with facts (A) and (B) implies that

(ri.8) ((yO ,y I,~ ,yJ,~)EE~ ly °E (ri D0) ;  X~>O and iE X (i D )

tEl ; y1 E (riD
1
), 51

EE1, and h1
&)+~1~~

O, j EJ3,

‘s—v..,; - • ,. ~~~ •~~~~ ,~ •~- -,• .. .__-~~ ._ • —  .••
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by virtue of both the equation

(ri D~) - C~~~~
, X~) I X~ >0 and y~ E X~ (ri Di))

and the equation

(ri C (y1,8
1
) y1 E D

1 
and h

1
(y1) +~ 1

�0)) -

C(y~,S~
) 18 1

EE1, y1 E (riD1) ,  and h
1
&) +S~~ 

<0).

To derive the latter equation, simply use Theorem 6.8 on page 49 of (3]

• along with fact (C) . To derive the former equation , first consider the

point-to-set mapping 4:4 where

~ (yi (yi X~) E D~)

and

A~~~(X~ I Y ~(X~] is not empty).

Now, Corollary 6.8.1 on page 50 of (3] implies that

(ri D~> ’  f (y i, ,~~) X~ E (ri4) and y~ E (ri4(X~])).

Moreover , the definition of D~ clearly shows that 4” ~~~ 
�03 ,  which means

of course that

(ri 4) ’. C x~>o) .

Furthermore , for Xi >O the definition of clearly shows that

~~~ XiDi~ 
which means that V

(r i 4(X~ J )  s X i (ri Dj ) for Xi E (r i4) ,
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by virtue of Corollary 6.6.1 on page 48 of 13] . Consequently , our

deri vstion of the preceding formula for (rt .8) is complete.

In particular then , the Fenchel hypothesis in Theorem 1 simply

asserts that

there exists a vector (y°,y 1,X ,y~,O) y°

such that ~ °,y
1,y~)E(riY); y° E (ri D0 ) ;

>0 and y~ E X~ (ri D~)~ i E I; y1 E (ri D
1
)

and h
1 

(y1) <0 , J E J.

To complete our proo f , we now show that this hypothesis is in fact equivalent

to the hypothesis

there exists : vector (y °,y t ,? ,y~~)

such that (y ,y ,y ) E Y; y E

i EI ;  y 1E D  and h
1

(y 1) < 0 , JEJ

and there exists a Vector

~
j
$.O 
,+I ~+~~+J) such that

(~4O ~+I ~+J) E (ri ~~ ; E (ri D0); X~ > 0

and E (ri D~)~ i E I; ~~ E (ri D
1
), j E.7.

Obviously, a vector (y°,y1,A ,y1) that satisfies the former hypothesis

istisfies both parts of the latter hypothesis. On the other hand,
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Theorem 6.1 on page 45 of [31 and Theorem 7.1 on page 51 of (3] imply that
‘0 ‘I ‘ *0 +1 + +Ja convex combination (1(7 ,y ,X ,y ) +8(y ,y ,X ,y ) of vectors

‘0 ‘I ‘ ‘.7 *0 +1 + +~(y ,y ,X ,y ) and (y ,y 1X ,y ‘s’ ) that satisfy the latter hypothesis

will satisfy the former hypothesis for sufficiently small 6>0. q.e.d.

Although the condition h
1 

(y 1) <0, j E J in hypothesis (i) of Theorem

2 resembles the well-known “Slater constraint qualification”, it is of

course to be deleted when .7 is empty -- which is the situation La most

applications. However, the analogous condition gj(x i)<0, LE t in

‘I hypothesis U) of the (unstated) dual of Theorem 2 (obtained from Theorem

2 by interchanging the symbols A and B, the symbols x and y, the symbols

K and )., the symbol s g and h, the symbols i and j ,  the symbols I and 3,

the symbol s ~ and 
~~
, the symbols X and Y, the symbols C and D, the symbol s

~
• 

~~
-

S and T, and the symbols S* and T*) is essentially the Slater constraint

qualification. In fact, we shall now see that the “ordinary prograi ing”

case of the dual of Theorem 2 actually strengthens Slater ’s version of

the “Kuhn-Tucker theorem” .
The ordinary progranining case occurs when

3~~0,

~~~~rn and Ck a C O for same set CØ~~E k E ( 0 ) U I ,

and
• TJ~ where there is a total of 1+o(I)

U
A

X col umn space of

U identity matrices U that are mxm .
— _
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In particular, an explicit el(~(nation of the vector space condition

x E X by the linear tra nsformation

(~
)
~

shows that the resulting problem A is equivalent to the very general

ordinary prograzining problem

Minimize subj ect to

) g~(z)~~O L E t

zEC.

Now, the Slater constraint qualification for the preceding problem

simply requires the existence of a feasible solution a ’ such that

L El . Moreover, Sla ter ’s version of the Kuhn-Tucker theorem

asserts that the existence of such a “Slater solution” z’ and the

existence of a finite infitnum ~ are sufficient to guarantee the

existence of a Kuhn-Tucker (Lagrange) multiplier vector X*

H To strengthen th e preceding th eorem with the aid of the dual of

Theorem 2, first note that th. image x’ (z’,z’,...,z’) of a Slater
solution a’ under the given linear transformation satisfie, hypothesis (i)

of the dual of Theor i 2. Then , note that the existence of a finite
infiiman ~ is simply hypothesis (ii) of the dua l of Thisoram 2. Now, the

- 

- ‘  convexity of C0 implies the existence of a vector z E  (ri C0), by virtue
• 

- j of Theorem 62 on pag.e - 45 of (3] . Moreover , it s image

• under the given linear transfo rmation clearly satisfies hypothesis (iii)

-~~~~~~~~~~~~~~~~
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of the dual of Theorem 2 -- because (r i I) — X by virtue of fact (A), and

because J’~~. Consequently, the dual of Theorem 2 implies that both T

and T* are nonempty and that 0 q,+~~. In view of Corollary 1A of (6], we

conclude from the nonemptyness of T* that a Kuhn-Tucker (Lagrange) vector -

X* exists. Finally , note that we have also shown the existence of

another vector y*; so the Slater version of the Kuhn-Tucker theorem has

actually been strength ened .

More significant implication s of Theorem 2 are given on page 47 of

( 1).
I
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